A Rook Theory Model for the Generalized p, q-Stirling Numbers of the First and Second Kind

نویسنده

  • Karen Sue Briggs
چکیده

In (EJC 11 (2004), #R84), Remmel and Wachs presented two natural ways to define p, qanalogues of the generalized Stirling numbers of the first and second kind, S(α, β, r) and S(α, β, r) as introduced by Hsu and Shiue (Adv. App. Math 20 (1998), 366-384). In this paper, we present a rook theoretic model for each type of p, q-analogue based on a pair of boards parametrized by the nonnegative integers α, β, and r, so that rooks attack cells on its own board as well as on its companion board. For each model, we provide an analogue of Goldman, Joichi and White’s product formula (Proc. Amer. Math. Soc. 52 (1975), 485-492) and demonstrate how each type of the generalized p, q-Stirling numbers of the first and second kind arises as a special case of these p, q-rook numbers. Résumé. Remmel et Wachs, dans (EJC 11 (2004), #R84), ont présenté deux façons naturelles pour définir les p, q-analogues des nombres de Stirling généralisés, des première et deuxième sortes, S(α, β, r) et S(α, β, r), introduits par Hsu et Shiue (Adv. App. Math 20 (1998), 366-384). Dans cet article, nous présentons un model théorique des mouvements de la tour pour chaque type des p, q-analogues basé sur une paire de jeux paramétrisés par les entiers non-négatifs α, β, et r. Ainsi, la tour attaque les cases sur son propre jeu et celles de l’autre jeu. Pour chacun des modèles, nous donnons une formule analogue à celle du produit de Goldman, Joichi et White (Proc. Amer. Math. Soc. 52 (1975), 485-492) et démontrons comment chaque type de p, q-analogues des nombres de Stirling généralisés des première et deuxième sortes forment un cas spécial de nombres p, q-analogues pour les mouvements de la tour.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rook Theory, Generalized Stirling Numbers and (p, q)-Analogues

In this paper, we define two natural (p, q)-analogues of the generalized Stirling numbers of the first and second kind S(α, β, r) and S(α, β, r) as introduced by Hsu and Shiue [17]. We show that in the case where β = 0 and α and r are nonnegative integers both of our (p, q)-analogues have natural interpretations in terms of rook theory and derive a number of generating functions for them. We al...

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

A p, q-analogue of a Formula of Frobenius

Garsia and Remmel (JCT. A 41 (1986), 246-275) used rook configurations to give a combinatorial interpretation to the q-analogue of a formula of Frobenius relating the Stirling numbers of the second kind to the Eulerian polynomials. Later, Remmel and Wachs defined generalized p, q-Stirling numbers of the first and second kind in terms of rook placements. Additionally, they extended their definit...

متن کامل

Elliptic Rook and File Numbers

Utilizing elliptic weights, we construct an elliptic analogue of rook numbers for Ferrers boards. Our elliptic rook numbers generalize Garsia and Remmel’s q-rook numbers by two additional independent parameters a and b, and a nome p. The elliptic rook numbers are shown to satisfy an elliptic extension of a factorization theorem which in the classical case was established by Goldman, Joichi and ...

متن کامل

Negative q-Stirling numbers

The notion of the negative q-binomial was recently introduced by Fu, Reiner, Stanton and Thiem. Mirroring the negative q-binomial, we show the classical q-Stirling numbers of the second kind can be expressed as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1 + q. We extend this enumerative result via a decomposition of the Stirli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006